Pages

Thursday, 9 April 2015

Menthol

From Wikipedia, the free encyclopedia
Not to be confused with methanol or methanal.
Menthol
(−)-Menthol
Ball-and-stick model of (−)-menthol
Menthol.jpg
Names
IUPAC name
(1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol
Other names
3-p-Menthanol
Hexahydrothymol
Menthomenthol
Peppermint camphor
Identifiers
89-78-1 Yes
ChEBICHEBI:15409 Yes
ChEMBLChEMBL470670 Yes
ChemSpider15803 Yes
DrugBankDB00825 Yes
Jmol-3D imagesImage
Image
RTECS numberOT0350000, racemic
UNIIYS08XHA860 Yes
Properties
C10H20O
Molar mass156.27 g·mol−1
AppearanceWhite or colorless crystalline solid
Density0.890 g·cm−3, solid
(racemic or (−)-isomer)
Melting point36 to 38 °C (97 to 100 °F; 309 to 311 K) racemic
42–45 °C, (−)-isomer, α crystalline form
Boiling point212 °C (414 °F; 485 K)
Slightly soluble, (−)-isomer
Hazards
MSDSExternal MSDS
Main hazardsIrritant, flammable
R-phrasesR37/38R41
S-phrasesS26S36
Flash point93 °C (199 °F; 366 K)
Related compounds
Related alcohols
CyclohexanolPulegol,
DihydrocarveolPiperitol
Related compounds
MenthoneMenthene,
Thymolp-Cymene,
Citronellal
Supplementary data page
Refractive index (n),
Dielectric constant (εr), etc.
Thermodynamic
data
Phase behaviour
solid–liquid–gas
UVIRNMRMS
Except where noted otherwise, data is given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 Yes verify (what isYes/?)
Infobox references
Menthol is an organic compound made synthetically or obtained from corn mintpeppermint or other mint oils. It is a waxy, crystalline substance, clear or white in color, which is solid at room temperature and melts slightly above. The main form of menthol occurring in nature is (−)-menthol, which is assigned the (1R,2S,5Rconfiguration. Menthol haslocal anesthetic and counterirritant qualities, and it is widely used to relieve minor throat irritation. Menthol also acts as a weak kappa opioid receptor agonist.

Structure[edit]

Natural menthol exists as one pure stereoisomer, nearly always the (1R,2S,5R) form (bottom left corner of the diagram below). The eight possible stereoisomers are:
Structures of menthol isomers
In the natural compound, the isopropyl group is in the trans orientation to both the methyl and hydroxyl groups. Thus, it can be drawn in any of the ways shown:
Menthol chair conformation Ball-and-stick 3D model highlighting menthol's chair conformation
The (+)- and (–)-enantiomers of menthol are the most stable among these based on their cyclohexane conformations. With the ring itself in a chair conformation, all three bulky groups can orient in equatorial positions.
The two crystal forms for racemic menthol have melting points of 28 °C and 38 °C. Pure (−)-menthol has four crystal forms, of which the most stable is the α form, the familiar broad needles.

Biological properties[edit]

macro photograph of menthol crystals
Menthol crystals at room temperature. Approx. 1 cm in size.
Menthol's ability to chemically trigger the cold-sensitive TRPM8 receptors in the skin is responsible for the well-known cooling sensation it provokes when inhaled, eaten, or applied to the skin.[1] In this sense, it is similar to capsaicin, the chemical responsible for the spiciness of hot chilis (which stimulates heat sensors, also without causing an actual change in temperature).
Menthol's analgesic properties are mediated through a selective activation of κ-opioid receptors.[2] Menthol also blocks voltage-sensitive sodium channels, reducing neural activity that may stimulate muscles.[3] A study showed that topical absorption of ibuprofen is not increased by menthol, but does note the complementary effect of the menthol as a pain reliever itself.[4]

Occurrence[edit]

Mentha arvensis is the primary species of mint used to make natural menthol crystals and natural menthol flakes. This species is primarily grown in the Uttar Pradesh region in India.
(−)-Menthol occurs naturally in peppermint oil (along with a little menthone, the ester menthyl acetate and other compounds), obtained from Mentha x piperita.[5] Japanese menthol also contains a small percentage of the 1-epimer, (+)-neomenthol.

Biosynthesis[edit]

Biosynthesis of menthol was investigated in M. x piperita, and all enzymes involved in its biosynthesis have been identified and characterized.[6] It begins with the synthesis of the terpene limonene, followed by hydroxylation, and then several reduction and isomerization steps.
More specifically, the biosynthesis of (−)-menthol takes place in the secretory gland cells of the peppermint plant. Geranyl diphosphate synthase (GPPS), first catalyzes the reaction of IPP and DMAPP into geranyl diphosphate. Next (−)-limonene synthase (LS) catalyzes the cyclization of geranyl diphosphate to (−)-limonene. (−)-Limonene-3-hydroxylase (L3OH), using O2 and NADPH, then catalyzes the allylic hydroxylation of (−)-limonene at the 3 position to (−)-trans-isopiperitenol. (−)-Trans-isopiperitenol dehydrogenase (iPD) further oxidizes the hydroxy group on the 3 position using NAD+ to make (−)-isopiperitenone. (−)-Isopiperitenone reductase (iPR) then reduces the double bond between carbons 1 and 2 using NADPH to form (+)-cis-isopulegone. (+)-Cis-isopulegone isomerase (iPI) then isomerizes the remaining double bond to form (+)-pulegone. (+)-Pulegone reductase (PR) then reduces this double bond using NADPH to form (−)-menthone. (−)-Menthone reductase (MR) then reduces the carbonyl group using NADPH to form (−)-menthol.[6]
Menthol biosynthesis image

Production[edit]

As with many widely used natural products, the demand for menthol greatly exceeds the supply from natural sources. In the case of menthol it is also interesting to note that comparative analysis of the total life-cycle costs from a sustainability perspective, has shown that production from natural sources actually results in consumption of more fossil fuel, produces more carbon dioxide effluent and has more environmental impact than either of the main synthetic production routes.[7]
Menthol is manufactured as a single enantiomer (94% ee) on the scale of 3,000 tons per year by Takasago International Corporation.[8] The process involves anasymmetric synthesis developed by a team led by Ryōji Noyori, who won the 2001 Nobel Prize for Chemistry in recognition of his work on this process:
MyrceneDiethylamineCitronellalZinc bromideMenthol synthesis.png
About this image
The process begins by forming an allylic amine from myrcene, which undergoes asymmetric isomerisation in the presence of a BINAP rhodium complex to give (after hydrolysis) enantiomerically pure R-citronellal. This is cyclised by a carbonyl-ene-reaction initiated by zinc bromide to isopulegol, which is then hydrogenated to give pure (1R,2S,5R)-menthol.
Another commercial process is the Haarmann-Reimer process. [9][10] This process starts from m-cresol which is alkylated with propene to thymol. This compound ishydrogenated in the next step. Racemic menthol is isolated by fractional distillation. The enantiomers are separated by chiral resolution in reaction with methyl benzoate, selective crystallisation followed by hydrolysis.
synthetic menthol production
Racemic menthol can also be formed by hydrogenation of pulegone. In both cases with further processing (crystallizative entrainment resolution of the menthyl benzoate conglomerate) it is possible to concentrate the L enantiomer, however this tends to be less efficient, although the higher processing costs may be offset by lower raw material costs. A further advantage of this process is that d-menthol becomes inexpensively available for use as a chiral auxiliary, along with the more usual l-antipode.[7]

Applications[edit]

Menthol is included in many products for a variety of reasons. These include:
  • In nonprescription products for short-term relief of minor sore throat and minor mouth or throat irritation.
  • As an antipruritic to reduce itching.
  • As a topical analgesic, it is used to relieve minor aches and pains, such as muscle cramps, sprains, headaches and similar conditions, alone or combined with chemicals such as camphoreucalyptus oil or capsaicin. In Europe, it tends to appear as a gel or a cream, while in the U.S., patches and body sleeves are very frequently used.
  • In decongestants for chest and sinuses (cream, patch or nose inhaler).
  • In certain medications used to treat sunburns, as it provides a cooling sensation (then often associated with aloe).
  • In aftershave products to relieve razor burn.
  • As a smoking tobacco additive in some cigarette brands, for flavor, and to reduce throat and sinus irritation sometimes caused by smoking. Menthol also increases nicotine receptor density, increasing the addictive potential of tobacco products.
  • Commonly used in oral hygiene products and bad-breath remedies, such as mouthwashtoothpaste, mouth and tongue-spray, and more generally as a food flavor agent; e.g., in chewing gumcandy.
  • In a soda to be mixed with water it is used to obtain a very low alcohol drink or pure (brand Ricqlès which contains 80% alcohol in France); the alcohol is also used to alleviate nausea, in particular motion sickness, by pouring a few drops on a lump of sugar.
  • As a pesticide against tracheal mites of honey bees.
  • In perfumery, menthol is used to prepare menthyl esters to emphasize floral notes (especially rose).
  • In first aid products such as "mineral ice" to produce a cooling effect as a substitute for real ice in the absence of water or electricity (pouch, body patch/sleeve or cream).
  • In various patches ranging from fever-reducing patches applied to children's foreheads to "foot patches" to relieve numerous ailments (the latter being much more frequent and elaborate in Asia, especially Japan: some varieties use "functional protrusions", or small bumps to massage ones feet as well as soothing them and cooling them down).
  • In some beauty products such as hair conditioners, based on natural ingredients (e.g., St. Ives).
  • As an antispasmodic and smooth muscle relaxant in upper gastrointestinal endoscopy.[11]
In organic chemistry, menthol is used as a chiral auxiliary in asymmetric synthesis. For example, sulfinate esters made from sulfinyl chlorides and menthol can be used to make enantiomerically pure sulfoxides by reaction with organolithium reagents or Grignard reagents. Menthol reacts with chiral carboxylic acids to give diastereomic menthyl esters, which are useful for chiral resolution.

Reactions[edit]

Menthol reacts in many ways like a normal secondary alcohol. It is oxidised to menthone by oxidising agents such as chromic acid or dichromate,[12] though under some conditions the oxidation can go further and break open the ring. Menthol is easily dehydrated to give mainly 3-menthene, by the action of 2% sulfuric acid.Phosphorus pentachloride (PCl5) gives menthyl chloride.
Reactions of menthol

History[edit]

There is evidence[13] that menthol has been known in Japan for more than 2000 years, but in the West it was not isolated until 1771, by Hieronymus David Gaubius.[14] Early characterizations were done by Oppenheim,[15] Beckett,[16] Moriya,[17] and Atkinson.[18] It was named by F. L. Alphons Oppenheim (1833-1877) in 1861.[19]

Compendial status[edit]

Toxicology[edit]

Ingesting pure menthol can be poisonous, and overdose is also possible through excess consumption of menthol-containing products.[23] The oral LD50 has been estimated at 192 mg/kg; other sources give much higher numbers like 2900 mg/kg.[24][25]

See also[edit]

References[edit]

  1. Jump up^ R. Eccles (1994). "Menthol and Related Cooling Compounds". J. Pharm. Pharmacol. 46 (8): 618–630. PMID 7529306.
  2. Jump up^ Galeottia, N., Mannellia, L. D. C., Mazzantib, G., Bartolinia, A., Ghelardini, C.; Di Cesare Mannelli; Mazzanti; Bartolini; Ghelardini (2002). "Menthol: a natural analgesic compound". Neuroscience Letters 322 (3): 145–148. doi:10.1016/S0304-3940(01)02527-7PMID 11897159.
  3. Jump up^ G. Haeseler, D. Maue, J. Grosskreutz, J. Bufler, B. Nentwig, S. Piepenbrock, R. Dengler and M. Leuwer. (2002). "Voltage-dependent block of neuronal and skeletal muscle sodium channels by thymol and menthol". European Journal of Anaesthesiology 19 (8): 571–579. doi:10.1017/S0265021502000923.
  4. Jump up^ Brain KR, Green DM, Dykes PJ, Marks R, Bola TS; Green; Dykes; Marks; Bola (2006). "The role of menthol in skin penetration from topical formulations of ibuprofen 5% in vivo". Skin Pharmacol Physiol 19 (1): 17–21. doi:10.1159/000089139PMID 16247245.
  5. Jump up^ PDR for Herbal Medicines (4th ed.). Thomson Healthcare. p. 640. ISBN 978-1-56363-678-3.
  6. Jump up to:a b Croteau, R. B.; Davis, E.M.; Ringer, K. L; Wildung, M. R. (December 2005). "(−)-Menthol biosynthesis and molecular genetics". Naturwissenschaften 92 (12): 562–77.Bibcode:2005NW.....92..562Cdoi:10.1007/s00114-005-0055-0PMID 16292524.
  7. Jump up to:a b Charles Sell (ed.). The Chemistry of Fragrances: From Perfumer to ConsumerISBN 978-085404-824-3.
  8. Jump up^ Japan: Takasago to Expand L-Menthol Production in Iwata Plant
  9. Jump up^ After the company Haarmann & Reimer , now part of Symrise
  10. Jump up^ Schäfer, Bernd (2013). "Menthol". Chemie in unserer Zeit 47 (3): 174. doi:10.1002/ciuz.201300599.
  11. Jump up^ Hiki, N; Kaminishi, M; Hasunuma, T; Nakamura, M; Nomura, S; Yahagi, N; Tajiri, H; Suzuki, H (2011). "A Phase I Study Evaluating Tolerability, Pharmacokinetics, and Preliminary Efficacy of L-Menthol in Upper Gastrointestinal Endoscopy". Clinical Pharmacology & Therapeutics 90 (2): 221. doi:10.1038/clpt.2011.110.
  12. Jump up^ L. T. Sandborn. "l-Menthone"Org. Synth.Coll. Vol. 1, p. 340
  13. Jump up^ J. L. Simonsen (1947). The Terpenes, Volume I (2nd ed.). Cambridge University Press. pp. 230–249.
  14. Jump up^ Adversoriorum varii argumentii, Liber unus, Leiden, 1771, p99.
  15. Jump up^ A. Oppenheim (1862). "On the camphor of peppermint". J. Chem. Soc. 15: 24. doi:10.1039/JS8621500024.
  16. Jump up^ G. H. Beckett and C. R. Alder Wright (1876). "Isomeric terpenes and their derivatives. (Part V)". J. Chem. Soc. 29: 1. doi:10.1039/JS8762900001.
  17. Jump up^ M. Moriya (1881). "Contributions from the Laboratory of the University of Tôkiô, Japan. No. IV. On menthol or peppermint camphor". J. Chem. Soc., Trans. 39: 77.doi:10.1039/CT8813900077.
  18. Jump up^ R. W. Atkinson and H. Yoshida (1882). "On peppermint camphor (menthol) and some of its derivatives". J. Chem. Soc., Trans. 41: 49. doi:10.1039/CT8824100049.
  19. Jump up^ Oppenheim (1861) "Note sur le camphre de menthe" (On the camphor of mint), Comptes rendus … , 53 : 379-380. From page 380: "Les analogies avec le bornéol me permettent de proposer pour ce corps le nom de menthol, … " (Analogies with borneol allow me to propose the name menthol for this substance, … )
  20. Jump up^ Therapeutic Goods Administration (1999). "Approved Terminology for Medicines". Retrieved 29 June 2009.
  21. Jump up^ 日本药局方. "Japanese Pharmacopoeia". Retrieved 29 June 2009.
  22. Jump up^ Sigma Aldrich"DL-Menthol". Retrieved 29 June 2009.
  23. Jump up^ "Menthol overdose: MedlinePlus Medical Encyclopedia". Nlm.nih.gov. Retrieved 2014-03-16.
  24. Jump up^ "Toxicology Module 1st installed Wednesday Nov 15, 2000". Goodhealth.freeservers.com. Retrieved 2014-03-16.
  25. Jump up^ "Material Safety Data Sheet Menthol, DL MSDS". ScienceLab. Retrieved 2014-03-16.

Further reading[edit]

  • E. E. Turner, M. M. Harris, Organic Chemistry, Longmans, Green & Co., London, 1952.
  • Handbook of Chemistry and Physics, 71st edition, CRC Press, Ann Arbor, Michigan, 1990.
  • The Merck Index, 7th edition, Merck & Co, Rahway, New Jersey, 1960.
  • Perfumer & Flavorist, December, 2007, Vol. 32, No. 12, Pages 38–47

External links[edit]

No comments:

Post a Comment